Haemophagocytic Lymphohistiocytosis HLH
Haemophagocytic Syndromes

Haemophagocytic Lymphohistiocytosis (HLH) is a rare disorder of the immune system primarily affecting young infants and children, although it can develop for the first time at any age. According to a large, population-based study published in Sweden, it was estimated to occur in 1.2 cases per million children, which corresponds to 1 in 50,000 births. However, this number must be considered minimal, as there are probably many patients today who are not diagnosed. For the autosomal-recessive forms of HLH (FHL), there is believed to be an equal number of male and female patients, but in addition, there are two known X-linked forms of FHL, affecting only males.

HLH involves over-production and activation of white blood cells called histiocytes and T cells, which normally combat infection. In contrast, often NK (natural killer) cell function is decreased. Decreased NK function is related to the consequence of genetic mutations which cause HLH. HLH is often referred to as either the “primary” form which is hereditary, or the “secondary” form associated with infections, viruses, autoimmune diseases, and malignancies (or cancers).

In the primary form, also known as Familial Haemophagocytic Lymphohistiocytosis (FHL or FHLH), defective genes are inherited from either both parents (autosomal recessive) or from the mother alone. In the latter case, the disease is called X-linked and only male children are affected. Since 1999, five genes have been identified which correspond with five subtypes of autosomal recessive HLH. The genes are PRF1 (perforin), MUNC13-4, STX11 (Syntaxin), STXBP2, and RAB27A. PRF1 encodes the protein (or toxin) normally involved in “killing” or eliminating abnormal immune cells. The proteins encoded by the other four genes facilitate the delivery of perforin to the cells which are to be killed. XIAP/BIRC4 mutations can also be considered as a cause of familial HLH.

While great progress has been made through research in recent years to define these genes, there remains a considerable proportion of FHL patients with as yet unknown underlying gene defects.

Onset of disease occurs under the age of 1 year in an estimated 70% of cases. FHL is suspected if siblings are diagnosed with HLH or if symptoms recur when therapy has been stopped. In the autosomal recessive form of the disease, each full sibling of a child with FHL has a 25% chance of developing the disease, a 50% chance of carrying one copy of the defective gene (which is very rarely associated with any risk of disease), and a 25% chance of not being affected and not carrying the gene defect. In the X-linked form of the disease 50% of male children will carry the defective gene and may develop disease. Fifty % of female children also carry the defective gene and may transmit it to their children but do not develop disease because they inherit a normal copy of the gene from their father.

So-called “secondary HLH” is often diagnosed in older patients who have no family history of this disease. It may be associated with vaccinations, viral infections such as Epstein-Barr, cytomegalovirus (CMV) or other herpes viruses, as well as other underlying diseases, principally autoimmune disorders and cancers, as mentioned previously.

It is difficult to know whether a patient has primary or secondary HLH on the basis of symptoms, which may be very similar. Therefore, genetic testing is usually recommended in order to make the proper diagnosis, regardless of age.

As awareness and understanding of this disease have increased worldwide, the diagnosis and survival rates have improved significantly. However, HLH remains a rapidly progressive disease requiring effective immunosuppressive and anti-inflammatory therapy.

HLH also occurs in some closely related diseases. These include X-linked lymphoproliferative disease (XLP), which is due to mutations in the SH2D1A gene (XLP1) or XIAP / BIRC4 gene (XLP2), Griscelli syndrome type II, which is due to mutations in the Rab27a gene, and Chediak-Higashi syndrome, which is due to mutations in the LYST gene.

Why Do These Conditions Result in HLH?

The T cells and NK cells in patients with primary / familial HLH cannot kill virus-infected or other abnormal cells in the patient’s body like they normally would. T cells and NK cells normally do this by secreting signals into targeted abnormal cells.
The proteins made by the MUNC 13-4, STXBP2, STX11, Rab27a and LYST genes work like the machinery of a conveyor belt, and are responsible for the secretion of the signals out of T cells and NK cells. The PRF1 gene makes a protein called perforin. It works like a key, and allows the secreted death signals to enter inside a targeted abnormal cell, where the death signals can work.
SH2D1A is responsible for a more specialized mechanism, and also controls how the T cells themselves die. It is not yet entirely clear why XIAP / BIRC4 mutations cause HLH.

Haemophagocytic Syndromes

Diagnosis and Treatment
It is sometimes difficult to establish the diagnosis of Haemophagocytic Lymphohistiocytosis (HLH), and the combination of the physical symptoms and certain laboratory tests is required. (Note: The understanding of the pathology underlying HLH/FHL disease is evolving, and recommended “diagnostic” criteria are likely to be revised in the future.)
• Low or absent NK (natural killer) cell function.
• Prolonged fever.
• Blood cell abnormalities (low white cells, low red cells, low platelets).
• Enlarged spleen.
• Increased triglycerides (fat) or decreased fibrinogen (protein necessary for clotting) in the
blood.
• Increased ferritin (protein that stores iron) in the blood.
• Abnormal bone marrow test with evidence of Haemophagocytosis (ingestion of red or white cells by
histiocytes) but not malignancy or other cause.
• Abnormally high CD25 (also known as sIL2ra) in the blood indicating abnormally increased T-cell
activation.
Other symptoms may include:
• Rash
• Enlarged liver/liver failure
• Enlarged lymph nodes
• Anaemia
• Jaundice
• Hepatitis
• Respiratory issues (coughing, respiratory distress)
• Seizures
• Altered mental functions

The test for low or absent natural killer cell (NK) function has been found useful in making a clinical diagnosis of HLH. This abnormality is found in many patients with FHL, as well as in many cases of secondary disease but rarely in the X-linked forms.

However, it is just one piece of information and should not be used to determine the diagnosis of HLH as primary or secondary. NK function cannot be determined before birth, and it may not be reliably studied until a child is at least 6 weeks of age. FHL is suspected if siblings have been diagnosed with HLH, if symptoms intensify during treatment for HLH, or if symptoms return after therapy has been stopped.

Since it is difficult to tell the difference between secondary HLH and FHL, any case of HLH should be considered for genetic testing to confirm the diagnosis. Since 1999, at least seven defective genes have been identified. Autosomal recessive: PRF1 (perforin), MUNC13-4, STX11 (Syntaxin), STXBP2, and RAB27A. X-linked: SH2D1A, BIRC4.

There are some FHL patients (approximately 30%) with no identified gene defect, so normal genetic test results do not necessarily rule out the diagnosis of FHL. Genetic testing is usually done on blood, although other kinds of tissue samples can be used. Once the genetic cause is known, the parents can quickly be tested to confirm that they are carriers for that specific genetic type of FHL. Other siblings can also be easily tested, even before birth, once the genetic cause of the disorder in the family is known. Even in the event of death, salvaged tissue can be tested to determine if siblings are at risk.

In 1994, as a result of an international cooperative effort, the first treatment protocol for patients with HLH/FHL was designed. This included a combination of chemotherapy, immunotherapy and steroids, as well as antibiotics and antiviral drugs, followed by a stem-cell transplant in patients with persistent or recurring HLH or those with FHL. The HLH-2004 protocol was based on the HLH-94 protocol with minor changes such as cyclosporin, an immunosuppressant drug, being started at the onset of therapy rather than week #8. This protocol has been widely accepted internationally and is used in numerous countries on all continents but should still be considered experimental.

Secondary HLH may resolve spontaneously or after treatment of the underlying disease, without the use of chemotherapy. Therefore treatment should be guided in part by the severity of the condition, as well as the cause of the disease.

FHL, however, when not treated, is usually rapidly fatal with an average historical survival of about 2 months. The treatment included in the HLH-2004 research protocol is intended to achieve stability of the disease symptoms so that a patient can then receive a stem-cell transplant, which is necessary for a cure.

In recent years, some transplant centers have adopted the use of reduced intensity conditioning (or “RIC”) to prepare for the stem cell transplant. This approach offers the possibility of better survival with stem cell transplant than the intensive chemotherapy protocols previously used.
As research continues, the outcome for patients with HLH/FHL has improved greatly in recent years. Approximately two-thirds of children with HLH who undergo transplantation can expect to be cured of their disease. However, there are a number of complications that can occur during the process of transplant, including severe inflammatory reactions, anemia, and graft-versus-host disease.

Long-term follow-up of survivors of transplants for HLH/FHL indicates that most children return to a normal or near-normal quality of life. The results of transplantation are generally better when the procedure is performed at a major pediatric transplant center where the doctors are familiar with this disease. Early and accurate diagnosis is essential. However, there is still a high rate of death, indicating that education of the medical community regarding prompt diagnosis and management of the diseases is required.

Please be advised that all the information you read here is not a replacement for the advice you will get from your consultant and their team.

Help ensure that we can continue to bring you this vital informational material, make a donation today

Haemophagocytic Syndromes (HLH)
These questions specifically relate to Haemophagocytic Syndromes (HLH).

Haemophagocytic Syndromes

1. What causes HLH?
HLH can either be acquired (secondary HLH) or inherited (FHL). Both forms of the disease can be triggered by infections, although it is not known why this happens. Secondary HLH may be triggered by vaccinations, viral infections such as Epstein-Barr, CMV (cytomegalovirus) or other herpes viruses, or other underlying diseases such as autoimmunity or cancer. In FHL, defective genes are inherited from one or both parents. Some other rare inherited immunodeficiencies may also be associated with HLH. The underlying immune defect and/or triggering events result in an abnormal immune response with activation of certain types of white blood cells (lymphocytes and macrophages) and the release of inflammatory proteins which then cause disease.

2. Is there a cure for HLH?
HLH patients with an underlying genetic defect can only be cured when the defective immune system is replaced by a healthy one which is what happens with a hematopoietic stem cell transplant. Secondary HLH cases can usually be cured by treating the underlying disease and sometimes additional immunosuppressive/immunomodulatory therapy.

3. What are the different therapies/treatments commonly used to treat HLH?
Some cases of secondary HLH can resolve spontaneously or after treatment of the underlying disease. Other cases are treated with a combination of chemotherapy (VP-16, methotrexate), immunotherapy (ATG, cyclosporin), and steroids. Any triggering infection has to be treated with appropriate antimicrobial drugs. Patients with persistent or recurring HLH or those with FHL additionally require a hematopoietic stem-cell transplant for recovery.

4. Why is routine newborn screening not available?
Although HLH may occur more frequently than some of the diseases routinely tested for, genetic testing for this disease is very complicated and very expensive.

5. How do I know if my child has primary HLH (inherited/FHL) or secondary HLH?
The clinical symptoms and laboratory findings do not differ in genetic or acquired HLH. Specific immunologic testing can raise the suspicion of genetic disease. In families with more than one affected child or in cases with disease reactivations there is a high probability of genetic disease. However, the identification of a genetic defect is necessary to prove it. Genetic testing is therefore recommended, regardless of age. Depending on the ethnic background up to 30% of patients with FHL have no identified gene defect, so negative test results do not necessarily rule out FHL.

6. How can I find out if my child’s siblings have HLH?
In autosomal recessive forms of the disease, each sibling of a child with FHL has a 25% chance of being affected. In related genetic disorders, including X-linked lymphoproliferative disease, each male child has a 50% chance of being affected. If a genetic defect is known in your family, genetic testing (before or after onset of symptoms) is available to identify siblings who may also be affected.

7. How can I find out if future children are at risk for developing HLH?
If a genetic defect has been identified in your family, prenatal diagnosis is possible by performing either amniocentesis or chorionic villus sampling (CVS) to test if the fetus is affected.

8. What is MAS (macrophage activation syndrome)?
Macrophage activation syndrome is a severe, life-threatening illness caused by the excessive production of types of white blood cells called T cells and macrophages. MAS has strong similarities with familial Haemophagocytic Lymphohistiocytosis (FHL) and virus-associated Haemophagocytic Lymphohistiocytosis (HLH). The exact relationship between MAS and HLH is yet to be determined, although some researchers believe that MAS is a secondary HLH disorder. The term is typically used for the HLH-like syndrome that can occur in patients with systemic onset juvenile arthritis.

9. What is reduced-intensity conditioning (RIC)?
Reduced-intensity conditioning is a less toxic pre-transplant therapy with the goal of suppressing the patient’s immune system enough so that it will accept donor stem cells while reducing the side effects of high dose chemotherapy The RIC may be used in some HLH patients, as well as some LCH patients with severe, resistant disease.

The answers to the following questions may be found in the Support Information.

THE DISEASE
How is it diagnosed?
How is it treated?
What are the clinical trials?

COPING
How do I cope with the diagnosis?
How do I get the information I want?
How do I talk to my children about this?
How do we deal with the treatment?
What happens at the end of the treatment?
What resources are there for individuals or family support?
Where can I get financial support?
How do I find other patients?

Please be advised that all the information you read here is not a replacement for the advice you will get from your consultant and their team.

Help ensure that we can continue to bring you this vital informational material, make a donation today

HLH Newsfeed

pubmed: haemophagocytic lymp...

NCBI: db=pubmed; Term=haemophagocytic lymphohistiocytosis

Multiple Nonleukemic Myeloid Sarcoma Associated Hemophagocytic Lymphohistiocytosis in an Adult.

Clin Lab. 2017 Nov 01;63(11):1919-1922

Authors: Zhang J, Zeng Y, Zhang X, Lai W, Chen Y, Xiao R

Abstract
BACKGROUND: Nonleukemic myeloid sarcoma (MS) occurs rarely. Hemophagocytic lymphohistiocytosis (HLH) is a rare and potentially fatal condition. We report a rare case of nonleukemic MS associated with HLH.
METHODS: Hematologic investigation, 18F-FDG PET/CT, bone marrow aspirate and biopsy, and lymph node biopsy were performed in a 25-year-old male patient.
RESULTS: The patient was given a short-term treatment of etoposide and dexamethasone to control HLH. Then he received chemotherapy and responded well.
CONCLUSIONS: It is important to find the underlying cause of HLH in high-risk patients. HLH can occur secondary to nonleukemic MS. Early diagnosis and treatment can improve survival.

PMID: 29226650 [PubMed - in process]

Contribution to diagnosis and treatment of bone marrow aspirate results in critically ill patients undergoing bone marrow aspiration: a retrospective study of 193 consecutive patients.

J Intensive Care. 2017;5:67

Authors: Calvet L, Pereira B, Sapin AF, Mareynat G, Lautrette A, Souweine B

Abstract
Background: The purpose of the work was to assess the contribution to diagnosis and/or treatment (CDT) of bone marrow aspiration (BMA) in the critically ill patient.
Methods: The retrospective study included 193 patients. On the basis of BMA findings, contribution to diagnosis was defined by one of four previously unestablished diagnoses (maturation arrest of granulocyte precursors, hemophagocytic lymphohistiocytosis, hematological malignancy, marrow infiltration with cancer cells) and to treatment as the initiation or withdrawal of a specific treatment including the decision to forgo life-sustaining treatment (DFLST).
Results: A CDT of BMA was observed in 40/193 patients (20.7%). BMA contributed to diagnosis in 37 cases (granulocyte precursor maturation arrest, N = 10; hemophagocytic lymphohistiocytosis, N = 12; hematological malignancy, N = 15) and to treatment in 14, including three DFLSTs. In multivariate analysis, the factors associated with a CDT were hematological malignancy, cancer or non-malignant hematological abnormality known on admission, indication for BMA excluding isolated thrombocytopenia, higher pre-BMA HScore (calculated prior to BMA), and higher SOFA score with or without platelet-count SOFA subscore. In the 160 patients without hematological malignancy or cancer known on admission, non-malignant hematological abnormality known on admission, indication for BMA excluding isolated thrombocytopenia, higher pre-BMA HScore, and higher SOFA score calculated with or without platelet-count SOFA subscore were independently associated with a CDT of BMA.
Conclusion: BMA can have a significant CDT in ICU patients with or without a known hematological malignancy or cancer on admission. An HScore calculated before BMA can be a valuable tool for predicting a CDT of BMA.

PMID: 29225888 [PubMed]

Reactivation of Hemophagocytic Lymphohistiocytosis Triggered by Antithymocyte Globulin.

Intern Med. 2017 Dec 08;:

Authors: Matsuda K, Toyama K, Toya T, Ikemura M, Nakamura F, Kurokawa M

Abstract
A 16-year-old boy with Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis (HLH) underwent allogeneic hematopoietic stem cell transplantation after conditioning with fludarabine, melphalan, total body irradiation, and rabbit antithymocyte globulin (ATG). A severe, persistent infusion reaction occurred after the initial administration of ATG. Investigations showed a rapid increase in the levels of liver enzymes and ferritin, and the reactivation of HLH was confirmed by marked hemophagocytosis in the bone marrow. Treatment with pulse glucocorticoid therapy resulted in the improvement of HLH. This is the first case of HLH reactivation triggered by ATG. Physicians should therefore be cautious of HLH reactivation, especially when a severe and prolonged infusion reaction occurs.

PMID: 29225252 [PubMed - as supplied by publisher]

Expanding the Phenotype of ALK-positive Histiocytosis: A Report of 2 Cases.

Pediatr Dev Pathol. 2017 Jan 01;:1093526617740784

Authors: Huang H, Gheorghe G, North PE, Suchi M

Abstract
ALK-positive histiocytosis is a recently described rare histiocytic proliferative disorder of early infancy. When infants present with anemia, thrombocytopenia, and hepatosplenomegaly, this entity should be included in the differential diagnosis along with hemophagocytic lymphohistiocytosis, metabolic/storage diseases, hematopoietic malignancies, and autoimmune thrombocytopenia. We report 2 new cases of ALK-positive histiocytosis, one with kidney involvement and the other with extensive bone marrow involvement in addition to an overt liver disease. Renal involvement by ALK-positive histiocytosis has not been reported. The infiltrating histiocytes in this case showed Rosai-Dorfman disease-like morphology including emperipolesis. The histiocytes in the second case with extensive bone marrow involvement had foamy cytoplasm initially suggesting storage disease. Our 2 cases highlight previously unrecognized diversity of ALK-positive histiocytosis in clinical manifestation, organ involvement, and cytomorphologic features and further elucidate the diagnostic challenges of this rare entity.

PMID: 29224419 [PubMed - as supplied by publisher]

Please use the form below to contact Histio UK

When we are out of the office and over holiday periods we have limited access to email and telephone. We will respond to your enquiry as soon as it is possible or upon our return. Thank You.

Telephone: 01733 309619 - Please note this is not a 24 hour number - 9am to 5.30pm

Your Name (required)

Your Email (required)

Subject

Your Message

Please answer the question